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Surface free energy of the critical six-vertex model with free 
boundaries 

A L Owczarek and R J Baxter 
Department of Theoretical Physics, Research School of Physical Sciences, Australian 
National University, Canberra, ACT 2600, Australia 

Received 5 July 1988 

Abstract. The Bethe ansatz equations are derived for the six-vertex model with general 
boundary weights on a lattice in a diagonal orientation. These are solved in the thermo- 
dynamic limit. Finite-size corrections to the free energy (for a restricted class of boundary 
weights, including those corresponding to a Potts model with free boundaries) are calculated 
in the critical region. 

The first-order term gives the surface free energy of the model. The second-order term 
is found to be -nkTtan(nu/2p)c /48NfZ where c = [ l  -6p2/(.rr2-np)] is the conformal 
anomaly. This can be compared to -nkT sin( n u / ~ ) c / 6 N ' ~  for a calculation on the lattice 
in the standard orientation and with periodic boundary conditions. This difference can be 
explained geometrically using conformal invariance. 

1. Introduction 

The development of a procedure to calculate finite-size corrections to the free energy 
of a lattice spin system and the related ground-state energy of a quantum spin chain 
has recently received considerable attention. The impetus for this work has been the 
connection between these corrections and the hypothesis of conformal invariance. 

De Vega and Woynarovich (1985) have given a method for calculating the leading 
finite-size corrections for models soluble by the Bethe ansatz in the non-critical region. 
In particular they calculated the corrections to the ground state of the X X Z  chain and 
the six-vertex model with periodic boundary conditions in this region ( A <  -1). 

The extension to the critical region (1A1< 1) was explored by Hamer (1985, 1986), 
and Avdeev and Dorfel (1986) in the context of the X X Z  chain. Woynarovich and 
Eckle (1987) have provided an elegant method for the critical region: this technique 
has been applied by Hamer et al (1987) to the Potts and Ashkin-Teller quantum spin 
chains with both periodic and free boundaries and by de Vega and Karowski (1987) 
to the six-vertex model with periodic boundary conditionst. 

Here we consider the six-vertex model on the square lattice turned through 45", 
with free boundary conditions. In fact, we first allow the boundary weights to be 
arbitrary. This means that our model includes the regular square lattice Potts model 
with free boundaries (Baxter et a1 1976). 

t Karowski (1988) has extended this technique to calculate the scaling dimensions of models solvable by 
the Bethe ansatz and has considered the six-vertex and Potts models with periodic boundary conditions. 
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1142 A L Owczarek and R J Baxter 

The model is explained and the Bethe ansatz equations are set up in a manner 
similar to Alcaraz et aZ (1987) in $ 2 .  These are shown to give the known answer to 
the bulk free energy (Baxter 1982). The finite-size corrections (for a lattice of infinite 
height but finite width) are calculated in $ 3. We use the method explained by Hamer 
et aZ(1987). The surface free energy and conformal anomaly term are given in equation 
(3.15). In the light of conformal invariance we discuss the results in 0 4. A summary 
of this work is contained in $ 5 .  

2. Bethe ansatz six-vertex model 

Let us consider a six-vertex model on a rotated M ' x  N' lattice (where M'>> N'>> 1) 
as in figure 1. We place arrows on edges subject to the rule that at each site there be 
two arrows in and two out. There are then six internal configurations as in figure 2,  
with weights 

w l , .  , . , 06= 1, 1, b, 6, c, c' 

and four external configurations with weights 

w, ,  . . . , w l 0 =  1, d, e, 1 

1 2 3 4  5 
1 

2 

3 

Ml-7 4 

5 
6 

7 

Figure 1. A 7 x 5 lattice of the rotated orientation. 

x x x x  
w, :1 w*=1 W g  = b W b =  b 

< < >  
w = e  9 w, =I wg =d 

x x  
w5 = c  w* .c '  

> 
w = 1  10 

Figure 2. The six internal and four external weights of the six-vertex model on a rotated 
lattice. 
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where we have normalised the weights so that a configuration of all arrows up has 
total weight 1. The partition function 2 is given by 

Z =  c n (weights). 
configurations vertices 

There naturally exist two types of rows of vertices and two types of rows of edges 
as in figure 3. This leads us to define two transfer matrices TI and Tz. T1(T2) is the 
matrix of all the weights of configurations of a type 1 (2) row of vertices. The transfer 
matrices T1(T2) can be viewed as adding a row of edges of types 2 (1) to the lattice. 
The partition function can be written as 

2 = Tr(T1T2)M"2. (2.4) 

(We choose periodic boundary conditions on the first and last rows since it is the free 
boundary columns that dominate in finite-size corrections as M' >> N'. We choose M '  
to be even.) 

Type-1  edges 

2"-2 2"-1 2N' 

Type-2  edges 

Figure 3. Examples of the two different types of rows of vertices and edges that occur in 
this model. A T, (T2) transfer matrix acts on a type-1 (2) row of edges to add a type-2 ( 1 )  
row of edges. In doing so it creates a type-1 (2) row of vertices. 

Let us now examine any particular configuration of the arrows on the lattice. We 
notice that, if the configuration of one row contains a number n of down arrows on 
the 2 N ' =  N edges, then each row has n down arrows. This observation provides us 
with a good 'quantum' number n of the matrices TI and T2 since they split into N + 1 
diagonal blocks characterised by n. 

We identify a state of a type 1 (or 2) row of edges by defining the positions of the 
down arrows of the configuration 

1 < ~ 2 < .  . < X, N. (2.5) 

Let x = { x l , .  . . , x,} and G(x)  and F ( x )  be the elements of vectors, defined on a 
type-1 and type-2 row of edges, respectively, having the property 

( 2 . 6 ~ )  

(2.66) 

We deduce 

A2G=T2T1G ( 2 . 7 ~ )  
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and 

A2F = TITzF (2.7b) 

so G ( F )  is the eigenvector of the two-row transfer matrix TITl (TITz), and A2 is the 
eigenvalue. It follows that the partition function is asymptotically 

Z - A::, (2.8) 

where A i a x  is the largest eigenvalue of TIT2. 
We can consider the eigenvalue problem (2.7) for a particular n. We start by 

considering equations (2.6) for n = 0, then n = 1, moving onto n = 2 and then generalis- 
ing to arbitrary n as is the usual procedure (Baxter 1982, Alcaraz et a1 1987). We 
follow a notation similar to Alcaraz et a1 (1987). 

2.1. The case n = 0 (no down arrows) 

This case corresponds to a state where all the arrows in a row are up. We have 
deliberately chosen the weights so that 

A F = G  ( 2 . 9 ~ )  

and 

AG=F.  

Hence 

A=*1 so F = i G .  

2.2. The case n = 1 (one down arrow) 

The transfer matrix equations (2.6) become 

h F ( x )  = c Tl(x, x’)G(x’) 
X’ 

(2.9b) 

(2.10) 

(2 .11~)  

AC(x) = T2(x, x’)F(x’) (2.11b) 
X’  

where F (x )  (respectively G(x)) is the element of F (respectively ( G ) )  for one down 
arrow in the x position along the row. 

Explicitly 

AF(x) = cG(x)+ bG(x+ 1) (2 .12~)  

AF(x)=  bG(x- l )+c’G(x)  ~ = 3 ,  . . . ,  N - 1  (2.12b) 

hG(x)  = cF(x)+ bF(x+ 1) (2.12c) 

AG(x) = bF(x - 1) + c’F(x) (2.12d) 

x = 2, .  . . , N -2 

x = l , .  . . , N - 1  

x = 2 ,  . . . ,  N 

with the boundary conditions 

AF(  1) = dG( 1) 

A F (  N) = eG( N)  

where N is the number of edges in a row of the lattice. 

(2 .13~)  

(2.13b) 
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We now choose an ansatz for F ( x )  and G(x). We notice that there are different 
equations for odd and even x. First look for a solution 

( 2 . 1 4 ~ )  

(2.14b) 

A = A ( k )  ( 2 . 1 4 ~ )  

where 

f(x, k )  = A , ( k )  eikx 

f(x, k )  = A,( k )  eikx 

g(x, k )  = Be( k )  eikx 

g(x, k )  = ~ , ( k )  eikx 

x even 

x odd 

x even 

x odd. 

( 2 . 1 5 ~ )  

(2.15 b) 

(2.15 c) 

(2.15d) 

Substituting this ansatz into (2.12) we obtain 

A ( k ) A , ( k )  = cB,(k)+ bB,(k) eik 

A ( k)A,( k )  = bBe( k )  e-ik + c’Bo( k )  

A(k)B,(k)  = cA,(k)+ bA,(k)  eik 

A ( k ) B , (  k )  = bA,(k) e-ik + c’Ae( k ) .  

( 2 . 1 6 ~ )  

(2.16b) 

( 2 . 1 6 ~ )  

(2.16d) 

We can now eliminate Bo( k )  and E, ( k )  to find 

( A 2 ( k )  - cc’-  b eZik)A,(k) = 2bc cos (k )A , (k )  

( A 2 ( k ) - c c ’ -  b e-2ik)Ao(k) =2bc‘cos (k )Ae(k )  

( 2 . 1 7 ~ )  

(2.17 b) 

and finally eliminate the ratio A,( k ) / A e (  k )  to obtain 

( A 2 ( k ) - c c ’ -  b e2ik)(A2(k)-cc’- b e-2 ik)=4b2cc’cos2k .  (2.18) 

We notice that (2.18) is invariant under the transformation k +  -k .  This implies 
that the trial solution (2.14) under the transformation k + - k also gives the same value 
of A’. 

We notice also that the ratio A o ( k ) / A e ( k )  plays an important role in these equations 
so we define 

and 

(2.19) 

(2.20) 
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Now using (2.19) and (2.20) we write (2.17) as 

= c t ( k )  e-ik 
A 2 ( k )  - cc’- b2 e2ik ( 2 b c o s k  

( 2 . 2 1 ~ )  

(2.21b) 

But both these equations are necessarily invariant under the transformation k + -k so 

c’r( k )  eWik = ct( - k )  eik ( 2 . 2 2 ~ )  

c t ( k )  e- ik= c’r ( -k )  eik. (2.22b) 

From the definitions (2.19) and (2.20) we know 

r ( k ) t ( k )  = e2ik 

so (2.22) gives 

t ( k ) t ( - k )  = [ r ( k ) r ( - k ) ] - ’ =  c’/c. 

Using (2.21) and (2.23) we can show that 

b + c’r(  k )  
c + b r ( k )  ’ 

t ( k )  = 

Also, using (2.21) and (2.23) we have 

A2(k)=cC’+bc ( t ( k )+-  r;k)) + b 2 r ( k ) r ( k ) .  

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Our trial solution (2.14) has not only succeeded and given us A ( k )  as (2.26) but 
led to a new solution via a transformation k +  -k  on (2.14) because A ( k ) = A ( - k ) .  
Hence any linear combination of these two solutions is a solution of (2.12). We try a 
linear combination of these solutions as our ansatz, attempting to choose coefficients 
to satisfy the boundary conditions (2.13): 

( 2 . 2 7 ~ )  

(2.27b) 
This ansatz now automatically satisfies (2.12). We want to choose k and 

We extend the definitions of our ansatz F ( x )  to x = 0 and x = N + 1, correspondingly 

F ( x )  = A ( k l f ( x ,  k )  - A ( - k l f ( x ,  - k )  

G ( x )  = A ( k ) g ( x ,  k )  - A ( - k ) g ( x ,  - k ) .  

A ( - k ) / A ( k )  to satisfy (2.13). 

extending (2.12): 

A F ( 0 )  = c G ( 0 )  + bG(  1 )  

AF( 1 )  = b G ( 0 )  + c’G( 1 )  

( 2 . 2 8 ~ )  

(2.28b) 

A F ( N ) = c G ( N ) + b G ( N + l )  ( 2 . 2 8 ~ )  

R F ( N + l )  = b G ( N ) + c ’ G ( N + l ) .  (2.28d) 

We then combine (2.28) with (2.13), eliminating G(O), G( l ) ,  G( N )  and G( N +  1 )  

( 2 . 2 9 ~ )  

to give 

F ( 0 )  + W( 1 )  = 0 
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and 

where 

F (  N +  1) + 6 ’ F ( N )  = 0 (2.29b) 

(2.30a) 

(2.306) 

Equations (2.29) are equivalent to the original boundary conditions (2.13) in the sense 
that if they and (2.28) are satisfied then so is (2.13). We now substitute our ansatz 
into (2.29) to find 

(2.3 1 a )  a( k)A(  k )  - a ( - k ) A (  - k )  = 0 

and 

P (  k ) A (  k )  - P(-k )A(  - k )  = 0 (2.31b) 

where 

a ( k )  = 1 + 6 t ( k )  

P ( k )  = ( t ( k )  + S’)[r(k)t( k)]N’2 .  

( 2 . 3 2 ~ )  

(2.32b) 

We note that (2.13b) is satisfied if A ( k )  satisfies the functional relation 

A ( k )  = P ( - k )  V k  (2.33) 

(which of course implies A ( - k )  = P ( k ) ) .  
Then (2.31a) gives 

(2.34) 

which is the Bethe ansatz equation for the n = 1 case. This equation can now, in 
principle, be used to solve for k. Hence (2.33) and (2.34) completely specify our ansatz 
(2.27) (up to a multiplicative factor). The Bethe ansatz equation (2.34) is of the form 

r ) ( k ) z Z N  = 1 (2.35a) 

where 

= e- ik 
( 1+6 t (k )  )( l+t(-k) /6’)  

r l ( k ) =  1+t (k ) /6 ’  1 + 6 t ( - k )  ‘ 
(2.35b) 

Hence we can find N distinct solutions for k (and also for -k) and so we have N 
eigenvalues A 2 ( k )  for the N x N matrix T,T2. We therefore have in (2.34) a complete 
solution for the eigenvalue problem (2.7). 

2.3. The case n = 2 (two down arrows) 

The transfer matrix equations (2.6) become 

( 2 . 3 6 ~ )  

(2.36b) 
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where F(x, ,  x2) (respectively G(x, , x2)) is the element of F (respectively ( C ) )  for two 
down arrows in the positions x1 and x2 with x1 < x2. These are explicitly 

AF(xl ,x2)= b2G(xl+1,x2+1)+bcG(xl, x2+1)+bcG(xl+1,x2) 

+ C2G(X1 , x2) when xl and x2 are even 

A F ( x I , x ~ ) =  b2G(x1+1, ~ 2 - 1 ) + b ~ G ( ~ l , ~ 2 - 1 ) + b ~ ‘ G ( ~ l + l ,  ~ 2 )  

+ cc’G(x,, x2) when x1 is even and x2 is odd 

AF(x,,x2)= b2G(xl-1,~2+1)+bc’G(xl,~2+1)+bcG(xl-1,~2) 

+ cc’G(x,, x2) when x1 is odd and x2 is even 

AF(x1, ~ 2 ) = b ~ G ( ~ 1 - 1 , ~ 2 - l ) + b c ’ G ( ~ l , ~ 2 - l ) + b c ’ G ( x l - l ,  x,) 

+ c’~G(x, ,  x2) when x, and x2 are odd 

AG(x1, x,) = b2F(xl - 1, ~ 2 -  1) + bc’F(X1, xZ- 1) + bc’F(x1- 1, ~ 2 )  

+ C f 2 F ( X 1 ,  x2) when x1 and x2 are even 

AG(x,, x2)=b2F(x1-1, ~ 2 + l ) + b ~ ’ F ( ~ l , ~ 2 + 1 ) + b c F ( ~ 1 - 1 , ~ 2 )  

+ c’cF( x, , x2) when x1 is even and x2 is odd 

AG(x1, ~ 2 )  = b2F(x1+ 1, xZ- 1)+ bcF(x1, ~ 2 -  1)+ bc’F(xI+ 1, ~ 2 )  

+ c‘cF( x, , x,) when x1 is odd and x2 is even 

AG(xl, x2) = b2F(x1 + 1, x2 + 1) + bcF(xl, x,+ 1) + bcF(xl + 1, x,) 

+ C 2 W 1  9 x2) when x1 and x2 are odd 

and on the boundaries we have 

AF(  1, XI) = d [ cG( 1, ~ 2 )  + bG( 1, x2 + 111 
A F (  1, ~ 2 )  = d [ c’ G( 1, x,) + bG( 1, ~2 - 1 )] 

A F ( x , N )  = e[cG(x,, N) + bG(xl + 1, N ) ]  

A F ( x l ,  N )  = e[c‘G(xl, N )  + bG(xl - 1, N I ]  

We also have the meeting conditions: 

when x2 is even 

when x2 is odd 

when x1 is even 

when x1 is odd. 

AF(xl ,  x1 + 1) = G(x1, x1 + 1) when x1 is even 

and 

ilG(x1, + 1) = F ( x ~ ,  XI + 1) when x1 is odd. 

Using (2.37) and (2.38), we can write (2.40) as 

b2F(xl+ 1, x , )+ bcF(x1, ~ 2 ) +  b c ’ F ( ~ , +  1, X +  l)+(CC’- l)F(xI,  X +  1) 

= O  when x1 is odd 

b2G(x1+ 1, XI) + bcG(x1, ~ 2 )  + bc’G(xI+ 1, XI+ 1)+ (cc‘-l)G(xI, XI+ 1) 

= O  when x is even. 

(2 .37~)  

(2.37b) 

(2.37~) 

(2.37d) 

(2 .38~)  

(2.38b) 

(2.38~) 

(2.38d) 

(2 .39~)  

(2.39b) 

(2.39~) 

(2.39d) 

(2 .40~)  

(2.406) 

(2 .41~)  

(2.41b) 
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We now choose our ansatz guided by the n = 1 case and (2.20) of Alcaraz et a1 

( 2 . 4 2 ~ )  

(2.428) 

where f ( x ,  k )  and g(x ,  k )  are the ‘single-particle wavefunctions’ defined in (2.15), the 
sum extends over all permutations and negations of the k and e p  changes sign on each 
‘mutation’. Thus there are 2! x 22 = 8 terms in each P sum in (2.42). 

Now (2.37) and (2.38) are automatically satisfied by each of the eight terms of the 
sum, provided only that 

(2.43) 

As with the n = 1 case, we can simplify the boundary conditions (2.39) by extending 
(2.42) to x1 = 0, x2 = 0, x1  = N + 1 and x2 = N + 1. Using (2.37) and (2.38), the boundary 
conditions (2.39) simplify to 

F(0,  x2) + 6F( 1, x2) = 0 VX, ( 2 . 4 4 ~ )  

F ( x , ,  N + l ) + 6 ’ F ( x , ,  N)=O v x ,  * (2.44b) 

(1987) as 

F(x1 Y x2) = c EPA(k1 Y kZlf(X1 Y klIf(X2, k2) 

a x ,  , xz) = c EPA(k1, k , )g(x , ,  kAg(x2, k2) 
P 

A = A (k1)h (k2). 

Using our ansatz in (2.44) we have 

( 2 . 4 5 ~ )  

(2.456) 

As well as ( 2 . 4 5 ~ )  and (2.45b) there are three other equations for each, obtained from 
these either by a negation of k2 ( 2 . 4 5 ~ )  or k ,  (2.45b), or a permutation of kl and k,, 
or both. We thus have eight equations. 

We now substitute our ansatz into the meeting condition ( 2 . 4 0 ~ )  to obtain 

4 k 1 ,  k2)A(kl ,  k2) -S(k*,  k l )A(k2,  k l )  = 0 (2.46) 

where 

b Cc’-l C’ 

C bc C 
s( k l  , k2) = 1 + - r ,  + - r2+- r , r , .  (2.47) 

Again, three other equations can be found by negating k , ,  k2 or both. Equation (2.40b) 
is now automatically satisfied. 

By using (2.46), (2.45b) and ( 2 . 4 5 ~ )  to successively express A ( k l ,  k2)  in terms o f  
A( k 2 ,  k l ) ,  A( k,, - k,), A( - k ,  , k2)  and A( k ,  , k2) ,  we obtain the compatibility condition 

(2.48) 

where 

B(  k, k’) = s ( k ,  k’)S( k‘, - k ) .  (2.49) 

As there are eight functions that can be obtained from A( k ,  , k,) by mutations, we 
have eight compatibility conditions. However, because S( k, k’) has the property 

r ( - - ~ M - k , ,  -kJ  = r ( k M k 2 ,  k , )  (2.50) 
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and both sides of (2.48) are of the form 

Y ( k J  
Y(-k1) 

(2.51) 

(2.48) is invariant under negations, so we only obtain one new equation through 
permutation, namely 

(2.52) 

Therefore we have two equations for the two unknowns k ,  and k2 so, in principle, we 
can solve for them. Then A( k ,  , k2)  is given, for all k,  , k2 ,  by 

(2.53) 

and all the requirements (2.45) and (2.46) are fulfilled. Equations (2.48) and (2.52) 
are the Bethe ansatz equations for this n = 2 case. 

2.4. General n 

The n = 2 case results can be generalised to arbitrary values of n. 
The ansatz becomes 

F(x1, * 3 xn)=C ~ p A ( k l )  * 9 knlf(x1, k,)  * * * f ( x n ,  kn) ( 2 . 5 4 ~ )  
P 

and 
G(xI , . . . , x ,  )=C~~A(k~,...,k,)g(xl,k~)...g(x,,kn) (2.546) 

where f ( x ,  k )  and g(x,  k )  are the single-particle wavefunctions, the sum extends over 
all negations and permutations of the k, and .sp changes sign at each mutation. 

Each term in (2.54) will automatically satisfy the ‘free’ equations of the general 
eigenvalue problem (2.6). The ansatz (2.54) therefore yields the eigenvalue 

R = A ( k , )  ... A(kn) .  (2.55) 

The substitution of our ansatz into the boundary conditions will give 

a ( k l ) A ( k l , .  . . , k n ) - a ( - k l ) A ( - k l ,  k2,. . . , kn)=O ( 2 . 5 6 ~ )  

and 
P(kn)A(k l , . *  * k,)-P(-k,)A(k,,...,kn-,,-kn)=O. (2.56b) 

The ‘meeting’ conditions give 

s(k,, k j+l)A(  ..., k,, kj+,,. . . ) - ~ ( k , + ~ ,  kj)A( ..., kj+l, k j ) . .  . ) = O .  (2.57) 

Again, other equations are found from these by appropriate negations and permuta- 
tions. Importantly, the conditions (2.56b) and (2.57) are automatically satisfied by 

We then see that ( 2 . 5 6 ~ )  is satisfied, provided 

(2.58) 

(2.59) 
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The n compatibility conditions are the Bethe ansatz equations for general n. They 
can, in principle, be used to solve for the n unknowns kj.  Then (2.58) will give the 
coefficients A( k , ,  . . . , k n ) .  Again it is due to the special properties of the functions in 
these equations that we have n equations and not 2"n ! as one might expect from the 
number of functions A( kl  . . . , k, )  produced by mutation. 

2.5. Special case (including Potts model) 

A significant feature of equations (2.59) is that the left-hand side simplifies if the 
condition 

66'= 1 (2.60) 

holds. The Bethe ansatz equations then become 

' B(-kj ,  kl) 
exp(i2Nkj) = n 

I = ,  B(kj,  k,) 
# j  

j = 1, . . . , n. (2.61) 

Up until now we have considered the six-vertex model on a lattice of rotated 
orientation with general boundary weights. But Baxter et a1 (1976) derived an 
equivalence between the q-state Potts model on a square lattice B of standard orienta- 
tion and a staggered six-vertex model on the medial lattice 3'. The partition function 
is 

(2.62) 

where K and L are the interaction coefficients in the horizontal and vertical directions, 
the Potts spins S I , .  . . , S N t M r I 2  each take on the values 1 , .  . . , q, the ( i ,  j )  sum is over 
all horizontal edges of B and the (i, k) sum is over all vertical edges. Furthermore, 
the condition 

(2.63) 

for self-duality of the model is applied. 
The first relevant feature of the equivalence established by Baxter et a1 (1976) is 

that the corresponding medial lattice 2' is in the rotated orientation and of size M' x N' 
(see figure 7 of Baxter et a1 (1976)). Second, the internal weights of the six-vertex 
model, equivalent to this Potts model, are 

(2.64) 

(eK - l)(e"- 1) = q 

0 1 ,  * .  . , 0 6 =  1,1, x, x, t - ' + x t ,  t + x t - '  

(2 .65~)  

(2.656) 
Last, we take the boundary conditions on the Potts model to be 'free'. The external 

(2.66) 

weights of the equivalent six-vertex model are 

W 7 , . .  . ,010=1, t, t - l ,  1. 

Now, making the correspondences 

b = x  c = t - ' + x t  c '=  t + x t - '  d = t  e = t - 1  (2.67) 
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the six-vertex model equivalent to this self-dual q-state Potts model with free boundaries 
is a special case of our six-vertex model. 

The partition functions are related via 

(2.68) 

where Z,, is the partition function defined by (2.3) for our model and P = M ’ x  N’ .  

6 = t - 3  6’ = t 3  (2.69) 

so that condition (2.60) is satisfied. Therefore the simplified Bethe ansatz equations 
(2.61) apply to the self-dual q-state Potts model with free boundary conditions. 

In the next subsections we consider the Bethe ansatz equations in the form (2.61) 
and in the critical region of the model. Hence our calculations apply to the above 
Potts model for q <4. 

P / 2  -P ZPOttS = 4 x Z,” 

But now we notice 

2.6. Thermodynamic limit (critical region) 

We consider the ‘general n’ equations with the condition (2.60), 
substitution for the internal weights as follows: 

sin U . er sin p , e-Tsin p 
sin( p - U )  ‘ sin( p - U )  sin( p - U )  a : b : c : c’=  1 : O<pu<.rr, 

We use a parametric 

We can define the familiar A = -cos p so IAI < 1, which places the system in its critical 
region. Making the transformation 

sin[(p -u ) /2+ ia ]  
sin[(p - v ) / 2  -ia] 

r( k )  = e‘ 

and 

sin[(@ +u) /2+ ia ]  
sin[(p + u)/2-ia] 

t(  k )  = e-‘ 

we can show that 

s( k. k, )  sin[p - i( a, - a,)] 
s( k,, k,) - sin[ p + i( a, + q)] 

I’ - 

(2.71) 

(2.72) 

(2.73) 

so the Bethe ansatz equations are from (2.59) 

sin[(p - u)/2+iaj]sin[(p + u)/2+iaj] 
sin[(p -u ) /2 - ia j ] s in [ (~+u) /2 - ia j ]  

= f i (  j = 1,. . . , n. (2.74) 
sin[p + i (  a, - a,)]sin[p + i( a, + a,)] 

I=1 sin[k -i(aj  - a,)]sin[p - i (a j  + a, )]  

We notice that these expressions defining the roots a, are independent of T, d and 
e, so that these ‘wavenumber’ variables aj depend only on the internal variables p and 
U (i.e. only on the vertex weights b and the product cc’). 
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We now follow the procedure in Baxter (1982), Gaudin (1983) and Hamer et a1 
(1987). Defining 

4 ( a ,  p )  = 2 tan-’(cot p tanh a )  

sinh(ip + a )  
sinh(ip - a )  

= i In (2.75) 

and taking the logarithm of (2.74) we have the Bethe ansatz equations as 

(2.76) 

where the l j  are integers. 
The maximum eigenvalue for given n has 

I . = j  j =  1 , .  . . , n (2.77) 

(Gaudin 1971, 1983). The value of n that produces the largest eigenvalue is n = N / 2 .  
We then must solve (2.76) for these conditions if we want the partition function for 
large N. 

As in de Vega and Woynarovich (1985) we define 

so that 

Z,(CYj) = 4/N (2.79) 

making the roots uniformly spread in the variable Z as pointed out by Hamer et a1 
(1987). 

We denote 

P N ( ~  1 = ~ Z N  ( a  ) /da.  (2.80) 

In taking the thermodynamic limit ( N  + 00) the roots aj form a continuous distribution 
with density NpN(a) and the sums become integrals. We conclude that 

p m ( a ) = ~ [ 4 ’ ( a , ( p - + ) / 2 ) + + ’ ( w ,  1 (p+v)/2)1--[  - P ~ ( P ) ~ ’ ( ~ - P , ~ U )  dP (2.81) 
-a 277 

where 
m 

JvE P m ( P )  dP  = 1. 

In appendix 1 we solve (2.81) by Fourier transforms to obtain 

2 c o s ( r v / 2 p ) c o s h ( r a / p )  
pm(a ) = p [ cosh(2ra /p)  + cos( T U /  p )] * 

(2.82) 

(2.83) 

This is clearly different from the result for the Bethe ansatz equations of the six-vertex 
model on a lattice of standard orientation. 
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2.7. Free energy (1  A I < 1 )  

The free energy is given by 

and so asymptotically can be given as 

f = - k T l n A g L .  

Now 
n 

A H a x =  n IcI(aj) 
j = l  

where 

sinh[i(p + v)/2-  a] sinh[i(p + u)/2+ a] 
sinh[i(p - u)/2 - a] sinh[i(p - u)/2+ a]' 

This can be seen to be true if we rewrite (2.26) using (2.25) as 

A*( k )  = ( c t r (  k )  + b ) ( c / r (  k )  + b )  

then use (2.55) and (2.71). 
Hence 

In the thermodynamic limit we have 

In +(a)p,(a) da.  

In appendix 1 we also solve (2.90) to find the known result (Baxter 1982) 

O0 sinh(2vy) sinh[( r - p ) y ]  dy 
2y sinh( r y )  cosh(py) * 

fm= -kT 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

3. Finite-size corrections 

In this section we take the Bethe ansatz equations and our expressions for the free 
energy and, using the technique described in Hamer et a1 (1987), calculate the surface 
free energy as the first-order correction to the bulk limit. We find the second-order 
correction which gives us the conformal anomaly. 

We begin by writing the expressions for the density of roots and the free energy 
for finite N, using the definitions (2.80) and (2.89), as 
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and 

where 
sinh{i[(p + v ) / 2 ]  - a }  
sinh{i[(p - u ) / 2 ]  + a }  

[ ( a )  =In 

(3.2) 

(3.3) 

Following de Vega and Woynarovich (1985) and Hamer er al ( l987)  we find expressions 
for the finite-size corrections in appendix 2 .  These are 

(3.4) 
where 

sinh[( v - 2 p ) x / 2 ]  e-iax dx 
[-m~inh[( l r -2p)x/2]+sinh v x / 2  

and 

(3.5) 

sinh[ ( 7 ~  - 2 p ) x / 4 ]  cosh( m / 4 )  e-iax dx 
sinh[(n.-2p)x/2]+sinh(m/2) (3.6) 

for the root density and 

where 

(3.8) 

for the free energy. We evaluate F(a) via Fourier transforms in appendix 2 to give 
cosh(.rra/p)+sin(m/2p) 
cosh( m / p )  -sin( m / 2 p )  

F E ( a ) = t l n  (3.9) 

where F E ( a )  denotes the even part of F ( a ) .  

Maclaurin formula which states (Hamer et al 1987) that if 
To evaluate ( 3 . 4 )  and (3.7) Woynarovich and Eckle (1987) introduced the Euler- 

(3.10) 
1 “  

sN(a )=-  s ( (Y -a j ) -pN(a )  N j = - n  

(3.11) 



1156 A L Owczarek and R J Baxter 

for an arbitrary function g(a) analytic in [-A, A], where A is the largest root, 
determined by 

(3.12) Z, (A) = n /  N = 4. 
Applying (3.11) to (3.4) and (3.7) we have for the root density 

p ' ( a -A)  1 
127rN2pN(A) n-N 

+ +-[p2(a)+p(a)]+terms smallerin N 

and for the free energy 

(3.13) 

(3.14) 

It can be seen that (3.13) is an integral equation of the Wiener-Hopf type and can 
be treated in a similar way to Hamer et a1 (1987). This has been done in appendix 3. 
The result has then been used in (3.14) in appendix 3 to achieve the conclusion: 

- 2sinh(uy) sinh[(n--2p)y/2] cosh[(n--p))y/2] cosh(py/2) 
y sinh( n-y) cosh(py) 

(3.15) 

This formula provides the finite-size corrections to the free energy of our model 
up to second order. This result is discussed in the next section. 

4. Conformal invariance 

In two dimensions the group of conformal transformations is isomorphic to the group 
of analytic functions and so is of infinite dimensionality. Conformal invariance there- 
fore provides large restrictions on the form of mathematical models in two dimensions. 
Conformal invariance (for a review see Cardy 1987) has been hypothesised to hold in 
critical statistical mechanics lattice systems (and critical quantum spin chains). 

It has been shown that conformal invariance (Blote et al1986, Affleck 1986) predicts 
the form of the finite-size corrections to the free energy: 

fN'=fm+--- sm n-5c +O(Nf-2) 

N' 24Nf2 

for free boundary conditions where sm is the surface free energy, c is the conformal 
anomaly which governs the critical exponents of the system and 5 is a scale factor 
independent of boundary conditions. 
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We can immediately identify the surface free energy from (3.15) as 

- O3 sinh( v y )  sinh[ ( n  - 2g)yl  cosh[( n - g)y/2]  cosh(gy/2) dy I_, y sinh( n y )  cosh( g y )  
(4.2) 

The conformal anomaly can be extracted in comparison with previous results (Hamer 
et a1 1987) as 

This leaves the scale factor as 

5 = ld = tan( nv /2g)  (4.4) 

(remembering 2N'=  N ) .  
For a lattice with the standard orientation, de Vega and Karowski (1987) obtain 

5, = sin( nv/g) .  (4.5) 

This difference can be explained using conformal invariance (Kim and Pearce 
1987). Cardy (1987) explains that conformal invariance implies scale, translational 
and rotational invariances. Neither the system of de Vega and Karowski (1987) or 
our system are rotationally invariant (unless v = g/2). This problem disappears if we 
shear the lattice to effectively rescale in one direction, so obtaining rotational invariance. 
This involves the 'isotropy angle' 8 (Kim and Pearce 1987) as a 'natural' shear angle. 
After shearing by this angle the two systems should be equivalent. 

1 

1 a,=1 

Figure 4. This diagram pictures two faces of a lattice sheared by the isotropy angle 0, 
which ensures rotational invariance. The scale factors for the normal square lattice and 
for the rotated lattice are calculated as the ratios of the respective 'vertical' to 'horizontal' 
single lattice spacings, where 0 = m / p ,  so 

and 
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The scale factor in each case can be calculated by taking the ratio of the two 
perpendicular single-lattice face distances that are relevant to the orientation of the 
system in question. One is in the direction in which the transfer matrix acts and the 
other is parallel to the row on which the transfer matrix acts (figure 4 ) .  Therefore we 
have 

(4 .6a )  l,, = a J a ,  = sin( m / p )  

and 

ld = .:/a: =itan(.rrv/2p). (4 .6b)  

We use 8 = m / p  in calculating these ratios and this gives us the two scale factors. 
Hence, even though 5 is independent of boundary conditions, it is dependent on 

the orientation of the lattice (i.e. how one chooses the transfer matrix). Our scale 
factor Id is then explained using the rotational invariance needed for the conformal 
theory to hold. 

5. Summary 

We have written down the Bethe ansatz equation (2.74) for a six-vertex model on a 
lattice of rotated orientation with general boundary weights and obtained the large- N 
solution. The equations simplify if (2.60) is imposed on the boundary weights, and 
this case is of interest as it includes the Potts model with free boundaries, when the 
boundary weights are given by (2.66). We have then calculated the finite-size corrections 
(3 .15)  to the free energy. In particular, these give the surface free energy (4 .2) ,  the 
conformal anomaly (4.3) and scale factor 5 (4 .4) .  This scale factor 5 differs from that 
of a non-rotated lattice: it is explained using a geometric argument assuming conformal 
invariance. 
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Appendix 1. The thermodynamic limit of the Bethe ansatz equations 

In this appendix we solve the integral equations (2.81) and (2.90) to find the limiting 
root density pa( a) and the free energy fa. 

We begin by defining Fourier transform pairs (which will be used throughout the 
appendices) as 

m 

f ( x )  = [ -* f (n )  eiax d a  ( A l . l a )  

and 
m 

f ( a )  =L [ f ( x )  dx. 25r --r: 
( A l . l  b )  
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We restate (2.87) as 

where 

2 sin 2 p  
= cosh 2a  -cos 2 p  ' "(a' (A1.3) 

We apply the Fourier transform to (A1.2), using the integral, which can be done by 
contour integration: 

sin p eiax sinh[(lr -p)x /2]  
sinh( lrx/2) ' 

d a  = 

We solve for pm(x) as 
cosh(vx/2) 
cosh( px/  2) * Pm(x) = 

Again, using contour integration we know 

so 
2 cos(lrv/2p) cosh(lra/p) 

p [ cosh( 2lra / p )  + COS( TU/ p)] P m ( a )  = 

as given in (2.83). 
We can now examine the free energy fm. It is given by recasting (2.90) as 

W 

fa= -H- J [(a)Pm(a) d a  
-m 

where 
sinh{i[(p + v)/2] - a }  
sinh{i[(p - v)/2]+ a} 

[ ( a ) = l n  

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 

(A1.9) 

We now use a corollary of the convolution theorem of Fourier transforms that 
states if f(x) (respectively g(x))  is the transform of f ( a )  (respectively g ( a ) )  then 

m m 

f ( a ) g ( - a )  d a  =L J f(x)g(x)  dx. (A1 .lo) 
2lr -m 

Then, applying (A1.10) to (A1.8) it is found that 

(Al.11) 

It is only left to evaluate f(x)/2lr but we need only calculate the even part of this as 
only the even part contributes to the integral since Pm(x) is even. Now 

(Al. 12) 
m 

[ ( a )  iax -- 5-"(x) - even part (I, e d a )  
21r 

m 
['(a) eiax da = even part ( - - )  2lrix 

(A1.13) 
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where 

2i sin p 

cosh(2a -iv)-cos p' 
['(a) = (A1.14) 

We use the integral 

sin p eiux sinh[( a - p)x /2 ]  
d a  = (Al .  15) 

-iv) -cos p sinh( ax/2)  

evaluated by contour integration, to show 

2 a  sinh( .rrx/2) 
-- f E ( x )  sinh(vxI2) s i n h [ ( ~ - p ) x / 2 ]  - (Al .  16) 

The result required in (2.91) is then obtained by making the substitution 2y = x. 

Appendix 2. Finite-size correction equations 

In this appendix we provide the derivation of the finite-size correction equations. 
We consider (3.1) and (2.80) to give 

"a) - P m ( a )  

(A2.1) 

(A2.2) 

This can now be solved for p N ( a )  -p,(a) via Fourier transforms to obtain 

This gives the result (3.4) with (3.5) and (3.6) defined as 

and 

(A2.3) 

(A2.4) 

(A2.5) 
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Next, we obtain from (2.90) and (3.3) 

m 

+ I - * 5 ( u ) ( p N ( a ) - ~ * ( o ) )  da.  

Substituting (3.4) into (A2.7) we find 

This is the result (3.7). 
It is left to evaluate (3.8) by Fourier transforms so 

sinh( vx/2) e-iux 
F E ( a ) =  I-, 2x cosh(px/2) 

dx 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

where, again we are only interested in the even part of F ( a )  since the rest of the 
integrand in (3.7) is even. We can evaluate (A2.9) by noting that 

O0 sinh( vx/2) e-'"" FE'( a = -i I_, d x. 
2 cosh(px/2) 

Using 

* ea" dx 7r 
IRe a (  < 1 

cosh x cos(7ra/2) 

we find 

-27r sin(7rv/2p) sinh(7ralp) 
FE'( a) = - 

p [cosh( 27ra/p) + COS( T U /  p ) ]  

(A2.10) 

(A2.11) 

(A2.12) 

The required result (3.9) can be found from (A2.12) using the indefinite integral 

y = - l n (  dz 1 -) Z - a  I z 2 - a  2a z + a  

after substituting z = cosh(Ta/p) .  

Appendix 3. Wiener-Hopf technique 

( A2.13) 

In this appendix we apply the procedure explained by Hamer et a1 (1987) to solve 
(3.13) and so, in turn, (3.14) for the finite-size corrections to the free energy. 
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We will refer to equations of Hamer et a l  (1987) by using the prefix H. We begin 

K ( . ) = p ( . ) / x  (A3.1) 

f(.) = P a ( &  + A )  (A3.2) 

x(a) =pN(a +A)  (A3.3) 

and setting t = (Y + A  we can find an equation of the standard Wiener-Hopf type 
(H2.29): 

with (3.13) by noting that using the definitions 

k'( t ) .  (A3.4) 
1 1 

~ ( t )  - lm k( t - s )x(s )  ds  = f ( t )  -- k ( t ) +  
0 2 N  12N2pN (A) 

This equation can be treated via the Fourier transforms defined in (Al.1). The kernel 

sinh( xx/2) 
2sinh[( T - p)x/2]  cosh(px/2) 

(1-E(x))= (A3.5) 

can be rewritten as the product of two functions g+(x) that are holomorphic and 
continuous in the half-planes x+ respectively. We have 

(A3.6) (1 - E(x))-' = g+(x)g-(x) 

where 

and $(x) is given by 

(A3.7) 

(A3.8) 

The functions f ( x )  and J(x) can be split (as in (H2.40) and (H2.42)) into the sum 

R(x) = R+(x) +R-(x) (A3.9) 

of two functions holomorphic and continuous in the half-planes x+ as 

where 

(A3.10) 

(and similarly for f (x)) .  
An equation of identical form to (H2.43) is thus obtained: 

f - ( x ) + ( l  -E(x))(f+(x) -E(x)) =f+(x)+f-(x)-E(x) (A3.11) 

where 

1 ix 
E(x) = -+ 

2N 12N2pN(A) '  
(A3.12) 

We would like to separate (A3.11) into parts analytic in each half-plane. In doing 

g-(x)f+(x, = 4+tx)+ 4 - ( X I  (A3.13) 
this we define 

similar to (H2.46). 
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So (A3.11) can be rewritten as 

(,f+(x) - F ( x ) ) / ~ + ( x )  - q+(x) = 4 - ( ~ )  - g - ( ~ ) [ j - ( ~ ) +  E ( x )  -f(x)] 3 P(x) 

which is identical in form to (H2.47). 
The argument from Hamer et al (1987) then becomes that the two sides of (A3.14) 

are analytic in different half-planes, but because there is a common strip of regularity 
including the junction of the half-planes T+ , one side must be the analytic continuation 
of the other. Hence i ( x )  is entire and can be determined from its asymptotic behaviour. 

(A3.14) 

Now using the asymptotic expansions (H2.48) we find 

1 ix -g --- P(x)  = 
144N2p,(A) 2 N 12N2p,(A) 

where 

(A3.15) 

(A3.16) 

The first significant departure from the analysis of Hamer et al (1987) appears now 
when we evaluate f ( x )  as 

e-ixA cosh( ux/2) 
s<x> = cosh( px/2)  I U l < P  

and keeping the leading pole term in T- we have 

2 e-ixA cosh( ux/2) 
(T - ipx) f < x )  = 

Following Hamer et al (1987) we can estimate 

2 g + ( i r / p )  cosh( - i m / 2 p )  
(T - ipx) 

We now have all we need to find x+(x) as 

4 + ( x )  = 

roo 

(A3.17) 

(A3.18) 

(A3.19) 

(A3 -20) 

We now return to the determination of A via (3.12). Firstly, we know that 
fro 

J p N ( a )  d a  = lim 2ZN(7)  
-03 1-03 

but (3.12) implies 
A 

p N ( a )  d a  = I  

so 
03 

p N ( a )  d a  =L 2 N  ( 1  -:). 

(A3.21) 

(A3.22) 

(A3.23) 
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Now, when x = 0 in (A3.20) we have 

and combining (A3.23) and (A3.24) it can be shown that 

P 4+(0) = -P(O) - 
.rrNg+(O) 

i.e. 

2 1 g CL - g + ( i r / p )  cos( .nv /2p)  =-+ 
7T 2 N 144N2p, (A) - .rrNg+(O) * 

(A3.24) 

(A3.25) 

(A3.26) 

By contour integration we obtain 
m 

pN(A) = 26+(0) =' I i ( x )  d x  
--a3 

ig +g+(im/p)  cos(.rrv/2p) 
(A3.27) -- g2 = -  

384N2pN(A) 24N P 

Defining p = 4N2rN(A) combined with (A3.26) and (A3.27) it can be shown that p 
satisfies the quadratic 

(A3.28) 

where 

CY = -p./.rrg+(O). (A3.29) 

We are now in a position to examine (3.14) although we first note that F ( c Y )  behaves 
like 

F ( a )  = 2 sin (E) e-ra/F for CY large. (A3.30) 

We first examine the terms 

(A3.31) 

in (3.14). 
From (A3.30) it follows that 

(A3.33) 

so from (A3.20) 

(A3.34) 
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Using the definitions of P(x) and q+(x) and the fact that Lj+(i.rr/p) = $ j+(O) ,  along 
with (A3.26) and finally (A3.28), we arrive at the conclusion that 

where 

-P 
f f =  

[2T(.rr - /.b)]1'2* 

Secondly, we examine the rest of the terms as 

(A3.35) 

(A3.36) 

(A3.37) 

We simply rewrite T2 using the same procedure of Fourier transforming the 
integrand we used to express the free energy in appendix 1. This results in 

t ( 0 )  * sinh(vx/2) s i n h [ ( ~ - 2 p ) x / 4 ]  c o s h [ ( ~ - p ) x / 4 ]  cosh(px/4) dx 
Nx sinh(.rrx/2) cosh(px/2) T2 = 7 - I-* 

(A3.38) 

Combining (A3.35) and (A3.38) the result (3.15) follows. 
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